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Designing a Multiroute Synthesis Scheme in Combinatorial Chemistry

Adi Akavia,† Hanoch Senderowitz,‡ Alon Lerner,§ and Ron Shamir*,§

School of Computer Science, Tel AViV UniVersity, 79978, Israel, Computer Science and Applied
Mathematics, The Weizmann Institute, RehoVot 76100, Israel, and Predix Pharmaceuticals Ltd.,

S.A.P Building, 3 Hayetzira Street, Ramat Gan 52521, Israel

ReceiVed September 19, 2003

Solid-phase mix-and-split combinatorial synthesis is often used to produce large arrays of compounds to be
tested during the various stages of the drug development process. This method can be represented by a
synthesis graph in which nodes correspond to grow operations and arcs to beads transferred among the
different reaction vessels. In this work, we address the problem of designing such a graph which maximizes
the number of produced target compounds (namely, compounds out of an input library of desired molecules),
given constraints on the number of beads used for library synthesis and on the number of reaction vessels
available for concurrent grow steps. We present a heuristic based on a discrete search for solving this problem,
test our solution on several data sets, explore its behavior, and show that it achieves good performance.

1. Introduction
Drug development is a long and expensive process; hence,

methods with the potential of accelerating it are of the utmost
importance. Combinatorial chemistry3,5,9,11,13,15-17,22,24,26,29can
greatly accelerate the lead discovery phase by producing large
arrays of compounds that could be screened for biological
activity in a high-throughput screening (HTS) manner.
Unfortunately, the very nature of traditional solid-phase mix-
and-split synthesis (see Figure 1b), which produces highly
similar compounds, contrasts with the requirements of the
lead discovery phase, in which highly diverse sets of
compounds are usually desired. Such diversity requirements
could be met through parallel synthesis (see Figure 1a), but
this strategy is limited in the number of compounds it can
produce.

In this work, we take the first steps toward bridging the
seemingly opposing characteristics of parallel and combi-
natorial synthesis by presenting a method for designing mix-
and-split-based synthesis schemes that maximize the number
of produced target compounds, namely, compounds from an
input library of desired molecules. This method could be
combined with a diversity selection algorithm1,4,14,18,19,23,25

to produce a unified scheme that facilitates synthesis of large
and diverse compound libraries.

Our work is based on the multiroute synthesis scheme
originally proposed by Cohen and Skiena.6 This scheme is
a generalization of both the mix-and-split and the parallel
synthesis methods, and similar to mix-and-split synthesis, it
is a process by which a large set of compounds is synthesized
in a combination of mix, split, and grow steps. However,
the mix steps here need not be a mixing of all the previously
produced compounds, but rather of any desired combination
of the previous subsets.

A description of a multiroute synthesis may be given in a
synthesis graph, as presented in the Methodology Section.
A synthesis graph (see Figure 2a) is a labeled, directed,
acyclic graph composed of layers, each describing the grow
operations for a position in the target compounds. The nodes
in the graph correspond to the grow operations, and their
labels indicate the appended unit. The arcs of the graph
correspond to beads transferred among the different reaction
vessels; that is, if nodeV has incoming arcs from nodesu1,
..., uk, then the mixing step takes compounds from nodesu1,
..., uk into nodeV. Combined together, the mixing step takes
compounds from all nodes with incoming arcs toV, and the
grow step appends to each of these compounds a unit given
by the label ofV.

The multiroute synthesis is appealing, because it enables
synthesis of libraries that are far larger than those producible
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Figure 1. (a) Parallel Synthesis: The process described by this
graph produces four strings,a1a2a3a4, b1b2b3b4, c1c2c3c4, and
d1d2d3d4. Building units (node labels) are added according to the
order in each chain. (b) Mix-and-split synthesis: the empty nodes
are mix steps. The labeled nodes are grow steps. Split steps are
denoted by arrows emanating from a mix node. The process
described by this graph produces 256 strings.
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by parallel synthesis and, at the same time, far more diverse
than those producible by mix-and-split synthesis. However,
in contrast to parallel or mix-and-split synthesis, for a fixed
assignment of labels to nodes, many multiroute synthesis
graphs could be designed, each leading to a different set of
output compounds. Thus, in order to locate the synthesis
graph that produces the largest number of target compounds
from a given input set, a search should be performed.

In their work, Cohen and Skiena6 considered only un-
weighted synthesis graphs, whereas we also consider the
weighted case. In weighted multiroute synthesis, a nonuni-
form distribution of the beads transferred from a node (i.e.,
reaction vessel) to its descendants is allowed. Weighted
multiroute synthesis is modeled by a weighted synthesis
graph. A weighted synthesis graph is a synthesis graph with
nonnegative arcs weights (see Figure 2b) in which the weight
of an arc (u,V) indicates the number of beads that are
transferred from nodeu to V.

In many real-life situations, the laboratory constraints on
the number of available reaction vessels (corresponding to
the number of nodes in any single layer) and the number of
beads used are quite rigid. On the other hand, the target set
of strings is often heuristically designed, so producing all of
the strings may not be critical. Moreover, avoiding some
target strings can greatly reduce the required number of beads
and reaction vessels. Hence, we explore the max string
synthesis problem, in which the goal is to produce as many
target strings as possible within the above constraints (see
the Methodology Section). We present a heuristic based on
a discrete search for solving this problem, test the heuristic
on several data sets, explore its behavior, and show that it
achieves good performance. Test runs were performed on
sets of peptides since these form natural candidates for all
synthesis methods (i.e., parallel, mix-and-split, multiroute)
discussed in this work.

In addition to Cohen and Skiena’s multiroute synthesis
scheme, several other strategies were considered for design-
ing mix-and-split libraries.8,21,27Most attempted to factor into
the design strategies the cost of mixture deconvolution. In

contrast, the present work does not consider deconvolution
issues and assumes that either (a) the beads are tagged or
(b) the beads are large enough and so contain enough material
to allow for a direct product identification via analytical
methods. A second major difference between our approach
and those reported in the literature is that while previous
strategies aimed at finding the optimal mix-and-split scheme
that would produce the entire target library, we recognize
the fact that giving up on some of the target sequences may
greatly simplify the mix-and-split scheme. Thus, we look to
maximize the number of target strings produced, subject to
synthesis constraints, rather than finding the best solution
for the mix-and-split scheme that would generate all target
strings.

This paper is organized as follows: In the Methodology
Section, we describe a model of the multiroute synthesis
process; present the problem that we study, max string
synthesis; and describe a heuristic for solving it. In the
Implementation Section, we give some details on our
implementation, and in Results and Discussion, we present
results from extensive experiments we performed in order
to evaluate its performance and time requirements.

2. Methodology

In this section, we present our methodology for solving
the max strings synthesis problem. We begin by describing
the weighted synthesis graph, by which we represent the
synthesis process; proceed by giving a mathematical formu-
lation of the max string synthesis problem; and then present
the algorithm we developed for solving it.

Synthesis Graph Model.We model the synthesis process
by a weighted graph (for an introduction to graphs in
computer science, see ref 7). A weighted synthesis graph
(see Figure 2b) is a layered graph,G ) (V, E), with a weight
function that assigns a positive weight to each arc, and a
source node, which is connected to all nodes in the first layer.
All nodes except the source node represent grow steps and
are labeled by the appended unit. The arcs are directed from
one layer to the next, and they represent transfer of beads
between grow operations. The weight of an arc (u,V)
represents the fraction of beads from nodeu that are
transferred toV.

Let P(G) denote the set of all paths inG starting at the
source and ending with a node in the last layer. Each pathp
corresponds to the stringσ obtained by concatenating the
labels along its nodes. The weight of a path,p, denoted by
weight(p), is the product of its normalized arcs’ weights. The
weight of a string,σ, denoted by weight(σ), is the sum of
weights of all paths inP(G) corresponding toσ. Note that
weight(σ) is equal to the fraction of beads expected to hold
σ at the end of the synthesis process described byG. Namely,
whenb beads are used, weight(σ) × b beads are expected
to holdσ. Hence, we say thatσ is produced byG when using
b beads if weight(σ) × b g 1. The set of all stringsσ
produced byG when usingb beads is called the language
produced by the graph, and is denoted byL(G, b).

We note that a synthesis graph represents a stochastic
process, because each split step randomly divides the set of

Figure 2. (a) Multiroute synthesis: The produced strings are
a1a2a3a4, a1b2b3b4a5, a1b2b3c4b5, a1c2c3b4a5, a1c2d3c4b5, a1c2d3d4b5,
b1d2d3c4b5, b1d2c3b4a5, b1d2d3d4b5, and b1e2e3d4b5. (b) Weighted
multiroute synthesis: the weight of an arc (u, V) represents the
fraction of beads fromu transferred toV.

Multiroute Synthesis Journal of Combinatorial Chemistry, 2004, Vol. 6, No. 4541



beads into subsets (albeit according to the arcs weights);
therefore,L(G, b) corresponds to the expected set of strings
produced byG when usingb beads, not necessarily to the
strings that are actually produced. When applying the
synthesis process, one can ensure that all the expected strings
are produced with high probability by taking redundant beads
(i.e., by usingb′ > b beads to increase the chance that the
entire setL(G, b) is produced). The amount of redundancy
needed is explored in ref 28.

Relevant Parameters.Let S be a set of target strings (a
library). Following Cohen and Skiena,6 we focus on the
problem of finding a synthesis scheme forS; however, when
considering the real-world version of the problem, there are
several different possible formulations to it. These formula-
tions depend on the choice of parameters to be constrained
and those to be optimized. Generally speaking, the relevant
parameters we focus on are

1. |V|: the number of nodes in the graph (which
corresponds to the number of grow steps). This number can
be estimated by the width of the graph (which corresponds
to the number of parallel grow steps) and the depth of
the graph, which is determined by the length of the strings
in S.

2. b: the number of beads used in the synthesis process.
3. |P(G)|: the number of paths in the graph (which roughly

corresponds to the number of needed beads in the synthesis
process).

4. |L(G,b)∩S|: the number of target strings that are
produced by the graph.

In the above list of parameters, the first three are to be
minimized, while the fourth should be maximized. We have,
therefore, four parameters, and in any optimization problem,
some may be bounded (or set to a fixed value, or penalized)
and some optimized. These variants give different problems,
which might vary greatly in complexity of their solutions.
In the following, we briefly consider examples of such
variants.

First, let us consider two such variants, which yield easy-
to-solve problems. If we must produce all target strings, while
there is no penalty on the number of nodes and the number
of paths is to be minimized, the solution is immediate: use
parallel synthesis to produce the target strings. If producing
all target strings is required, there is no penalty on the number
of paths, and the number of nodes is to be minimized, the
solution is again obvious: mix-and-split synthesis.

Second, we consider hard-to-solve variants. One variant
which has been shown to be NP-hard by Cohen and Skiena6

is the problem in which producing all target strings is
required, while the number of paths is bounded, and the goal
is to minimize the number of nodes. In the rest of the paper
we focus on a different variant of the problem: the max
strings synthesis.

Max Strings Synthesis.Max strings synthesis maximizes
the number of produced target strings while constraining the
number of nodes in each layer and while limiting the number
of beads. Namely, given a setS of target strings and two
positive integersw and b, the goal is to find a weighted
synthesis graphG of width, at most,w, that maximizes
|L(G,b)∩S| (see example in Figure 3).

Our motivation for defining the max strings synthesis
problem is the observation that in many real-life situations,
the laboratory constraints on the number of reaction vessels
(corresponding to the number of nodes in each layer) and
the number of beads used are quite rigid. On the other hand,
the target set of strings is often heuristically designed, so
producing all of them may not be critical. Often, avoiding
some target strings can reduce the number of paths and the
number of nodes sharply. Hence, we define the max strings
synthesis problem, in which the goal is to produce as many
target strings as possible subject to the above constraints.
Max strings synthesis was proven to be NP-hard in ref 2.

Algorithm. In this section, we present a heuristic for
solving max strings synthesis that operates by a discrete
search over the space of synthesis graphs. Searching for a
good synthesis graph, we face two opposing goals: naturally,
a good synthesis graph should have as many paths corre-
sponding to target strings as possible, while at the same time,
since the number of beads is bounded, it should have as few
paths for nontarget strings as possible. To balance these two
opposing goals, we impose a reduction of the number of
paths by limiting the search to graphs which are composed
of disconnected layered subgraphs, called slices, each
containing at most one copy of each label in each layer. This
limits the number of paths, since we allow no arcs connecting
nodes in different slices (see Figure 4).

Our algorithm for solving max strings synthesis is
composed of two main procedures, which are alternately
applied: a slice initialization procedure and an optimization
procedure. It maintains a set,S′, of target strings that are
not produced by the graph built thus far. Initially,S′ ) S. In
the slice initialization procedure, node labels and arc weights
are determined for a slice of the graph. The choice of labels
and weights is done in accordance with sequence frequencies
in the setS′. In the optimization procedure, we aim at
maximizing the number of target strings that are produced
by all slices initialized thus far. The optimization procedure
operates in two main steps: (1) arcs are deleted from the
graph until the number of paths is below the boundb on the
number of beads, and (2) once there are no more thanb paths
in the graph, arcs weights are recalculated so that the new

Figure 3. An example of max strings synthesis problem and
solution. Consider an instance of the max strings synthesis problem
with constraintsw ) 3 andb ) 11, and with a target libraryS )
{afhj, afik, begj, bfgj, bfhk, cfik, cfgj}. The above graph is an
example of a solution to this problem. It has width 3, and when
using 11 beads, it produces all strings inSexceptcfgj. In addition,
it produces the nontarget stringsafgj, afhk, bfhj, andbfik.
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weights allow all the strings corresponding to the paths in
P(G) to be produced. The slice initialization and the
optimization procedures are alternately applied until all slices
are initialized and optimized.

Slice Initialization. Let S′ denote those strings inS that
are not produced by the current graph. In each layer,l, of
the slice, nodes are labeled by the letters in positionl along
the strings composingS′ (note that the slice width in layer
l does not exceed the number of letters in positionl in S′).
When the number of nodes is equal to the number of letters,
each letter is given as a label to a distinct node. Otherwise,
some letters are not assigned as labels (since the number of
nodes is less than the number of letters). Thus, assigning
node labels already determines that some strings inS′ will
not be produced by this slice. To minimize the number of
such strings, we assign as labels the most frequent letters in
the set obtained fromS′ after discarding all strings that do
not have appropriate letters in previously assigned layers.
For example, assume all strings inS′ that have the letter “b”
in the second sequence position also have the letter “a” in
the first sequence position. In this case, ifa was not given
as a label to any node in the first layer (due to its low
frequency), thenb is not given as a label to any node in the
second layer (althoughb might be very frequent in the second
layer of S′).

Once all node labels are assigned, letS′′ denote the setS′
after discarding all strings that cannot be produced by the
slice (because they lack appropriate labels). Determining the
arcs weights is done as follows: We consider every two
nodesu, V in consecutive layers of the slice. Let label(u)
and label(V) denote the labels ofu andV, respectively. To
determine the weight of the arc (u, V), we consider the strings
in S′′ with letters label(u), label(V) in the positions corre-
sponding to the layers ofu andV, respectively. The assigned
weight is the fraction of these strings out of all strings inS′′
with the letter label(u) in the position corresponding to the
layer of u. Note that if there are no such strings, then the
weight of the arc is 0, which is regarded as a nonexistent
arc. This form of initialization was the best of all the
alternatives we considered (see ref 2).

Optimization. Optimizing the number of target strings
produced by the current graph (namely, all slices initialized
thus far) is done in two main steps: arc deletion, and arc
weights recalculation.

Arc Deletion. In this step, arcs are deleted from the graph
until the number of paths falls below the constraintb on the
number of beads. When choosing arcs to be deleted, we
would like to maintain as many paths corresponding to target
strings as possible while reducing the total number of paths.
For this purpose, we assign a score to each arc and delete
the arc with the worst score. We examined three scoring
functions: prob score, path score, and lookahead score.

To simplify the description of the scoring functions, we
define two terms: a target path is a pathp∈P(G) corres-
ponding to some target string, and a superfluous path is a
pathp∈P(G) that does not correspond to any target string.
The scoring functions we examined are defined as follows.

• Prob Score. The prob score of arce is the total
probability of the target paths using it, namely,

where TargetPaths(e) denotes the set of target paths passing
through the arce. Note that the above summation can be
calculated efficiently using the fact that each slice may
contain at most one copy of each target path: by scanning
a target path within a slice, one can readily find out if that
path appears, and if so, increase the weights of all the arcs
used in this path. The time required for scanning all target
paths against all slices is proportional to the input size times
the width,w.

• Path Score.The path score of arce is the ratio between
the number of target paths and the number of superfluous
paths passing through it, namely,

Computing the numerator can be done in the same fashion
as for the prob score. Although there may be an exponential
number of superfluous paths, their number can be efficiently
computed using the observation that the number of superflu-
ous paths through an arc equals the total number of paths
passing through it minus the number of target paths passing
through it. The total number of paths passing through an
arc (u, V) is the product of the number of its incoming and
outgoing paths. These values can be recursively computed:
Denote by out(u, V), the number of outgoing paths starting
with the arc (u, V). Then, out(u, V) ) 1 for arcs (u, V) ending
in the last layer (all compounds from the last layer are
outgoing to the pool of all produced compounds); otherwise,
out(u, V), is the sum of out(V, w) over all arcs (V, w) emerging
from V. The number of incoming paths is similarly computed.

• Lookahead Score.Consider a stringσ that corresponds
only to a single pathp∈P(G). When deleting an arce on p,
the string σ can no longer be produced by the graph.
Therefore, any other arc that was used only in paths
corresponding toσ may also be deleted. In the lookahead
score, we take into account the total effect of the deletion of
the arc, not only the counts of target and superfluous paths
passing through it. Thus, the lookahead score of an arc is
the ratio between target and superfluous paths eliminated
from the graph by the deletion of the arc.

Figure 4. A four-layer graph of width 8 and alphabet of three
letters, a, b, and c. The graph consists of three slices, (i), (ii), and
(iii), with at most one copy of each label in each layer. Due to the
constraint imposed on the width of the graph, the third slice consists
of two nodes only, labeled with letters that are the most frequently
occurring at the corresponding sequence positions in the target
strings not generated by slices (i) and (ii). See the Slice Initialization
section for more details.

prob score(e) ) ∑
p∈ TargetPaths(e)

weight(p)

path score(e) ) no. of target paths passing throughe
no. of superfluous paths passing throughe
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Recalculating Arcs Weights.Once the number of paths
in the graph is no more than the number of beads, the arcs
weights are reassigned to be

where outgoing(V) is the number of paths outgoing from node
V (which can be efficiently calculated similarly to the
calculations of the Path Score above). These arc weights
guarantee that the weight of each path inP(G) is at least
1/b, and thus, all the paths in the graph are produced by it.2

In summary, the high level description of the algorithm is
as follows:

While there is another slice to initialize
a. Initialize next slice: assign node labels and arc

weights.
b. Optimize current graph (namely, all slices initialized

thus far):
i. While number of paths exceeds number of beads:

compute arc scores and delete an arc with the worst score.
ii. Recalculate arc weights.

3. Implementation
So far, we have described our algorithms and the synthesis

graph under the assumption that all target strings are of the

same length. This was done in order to simplify the
description. In practice, we also handle string sets with
varying lengths. For this purpose, we add to the synthesis
graph auxiliary nodes, called phantom nodes, with which
we reduce the problem to the simplified case of all strings
being of the same length. For details we refer the reader to
ref 2.

Our algorithm is implemented using the C++ language.
As a means of visualizing the resulting synthesis graph, we
implemented a graphical interface (Figures 5, 6). This
graphical interface presents the output graph (labels and arcs
weights), together with some additional information, such
as the list of strings produced by the graph, their weights,
and the paths through which they were produced.

4. Results and Discussion

To test both the performance and the time requirements
of our algorithm for solving the max strings synthesis
problem, we performed extensive experiments on different
types of data sets. In this section, we describe the data sets
we used and compare the results of running the different
versions of our algorithm. For the version that proved best
(the lookahead score), we then present more extensive results.

Data Sets. We worked with a parent library, which
contained all possible sequences of length 5 generated by
the 10 natural amino acids (in parentheses, single letter
code): alanine (A), arginine (R), asparagine (N), aspartic
acid (D), cysteine (C), glutamine (Q), glutamic acid (E),

Figure 5. Graphical representation of a synthesis graph and the strings produced by it, as produced by our program. Appended units (node
labels) are given by numbers. Target strings that correspond to a path in the graph appear on the right-hand side. When a path corresponding
to one of the target strings is chosen (marked by a lighter square to its left), its path is drawn in bold, and the weight of the path appears
below the list. The indication “string created” means that given the bound on the number of beads, this string is actually produced by the
graph.

lookahead score(e) )
no. of target paths eliminated as a result of deletinge

no. of superfluous paths eliminated as a result of deletinge

weight(V, u) )
outgoing(u)

outgoing(V)
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glycine (G), histidine (H), and isoleucine (I). Each sequence
was characterized by a set of 30 descriptors, and following
principal component analysis (PCA), it was found that six
principal components covered more than 90% of the variance
in the original data set. Sets of sequences were diversity-
selected from the space defined by the above six PCs by the
MaxMin function using 100 000 Monte Carlo steps with
10 000 idle steps as a termination criterion. All these
calculations were performed with Cerius2 version 4.5.10

The MaxMin function belongs to a class of algo-
rithms1,4,14,18,19,23,25that aim to select from within a parent
library subsets of compounds that are as different from one
another as possible. Such diverse subsets are expected to
display a diverse spectrum of biological activities and,
consequently, form good candidates for biological screening
as part of lead discovery projects.

We note that diversity-selected data sets are less likely to
be produced by mix-and-split related combinatorial chemistry
because, on average, they have significant sequence dis-
similarities. In this sense, such data sets present a greater
challenge (compared with focused or random libraries) for
any algorithmic solution to the synthesis design problem.
Still, we chose to handle such data sets in order to comply
with common practice in the early stages of the drug design
process.

Using this diversity selection method, we chose 50 small
data sets, each containing 96 compounds. We also chose 20
large data sets, each containing 1000 compounds. In addition,
we designed synthetic data sets, each based on a set of 60
compounds from the parent library, of which 55 compounds
could be produced by a synthesis graph with the basic
parameters of 10 000 beads and width 10. We call these 60
compounds “structured compounds”. The 60 compounds
were chosen such that a minimum synthesis graph of width
10 producing all of them has out-degree 6 in each node
leading to 10× 64 paths, which is more than the number of
beads (10 000). By eliminating five paths, we could obtain
a synthesis graph producing 55 compounds, in which the
out-degree of half of the nodes is reduced to 5. This graph
has only 5× 54 + 5 × 64 paths (which is less than the
number of beads). This design gave us a lower bound on
the number of paths in the optimal solution and, hence, a
way to evaluate the performances of our algorithms in an
absolute manner. On top of theses 60 compounds, we added
different amounts of “noise”, that is, extra compounds, which
were randomly chosen from the parent library.

In summary, this is a list of the data sets we used:
(i) 50 sets of 96 compounds, diversity-selected from the

parent library (termed “96 real data”),
(ii) 20 sets of 1000 compounds, diversity-selected from

the parent library (termed “1000 real data”),
(iii) 10 sets of 60 structured compounds plus 10 “noise

compounds” (termed “70 synth data”),
(iv) 10 sets of 60 structured compounds plus 20 “noise

compounds” (termed “80 synth data”),
(v) 10 sets of 60 structured compounds plus 30 “noise

compounds” (termed “90 synth data”), and
(vi) 10 sets of 60 structured compounds plus 40 “noise

compounds”(termed “100 synth data”).

Results and Discussion.Statistics for the performance of
the algorithm (when using each of the three scoring func-
tions) on the different data sets are given in Table 1. For
each type of data set, we present the average and standard
deviation of the number of target strings that were produced
by the algorithm. We ran the algorithm with the following
basic parameters: number of beads 10 000 and width 10.

The results on the synthetic data were encouraging. For
each of the data sets, the number of generated strings is>55,
the number of strings we knew to be producible. In fact, in
all cases, the number was larger, because additional strings
from the “noise” were generated. For the 96 and 1000 real
data sets, it is harder to estimate the performance of our
algorithm, because the maximum number of target strings
that could be produced is not known. We see that on average,
more than one-third of the strings in the large data sets (1000
strings) and almost 90% of the strings in the small data sets
(96 strings) are produced.

The running time of the algorithm is very fast. On a
Pentium III (500 MHz, 0.5GB RAM), when using the
lookahead score, the large data sets (1000 strings) require,
on average, 45.15 s, while the small data sets (96 strings)
require only 0.0032 s.

The lookahead score is slightly better than the other scores.
This is not surprising, since this score takes into account
the effect of an arc deletion to a deeper horizon. We now
examine more thoroughly the behavior of our algorithm when
run with the lookahead score and when varying the con-
straints imposed on the synthesis graph.

First, we explored the difference between the results
obtained for the two real data sets, as measured by the
coverage, i.e., the percentage of target strings that are actually
produced. The difference in the average coverage, 87% for
the small data sets (96 strings) and 36% for the large data
sets (1000 strings), is easily understood when recalling that
the graph parameters (width 10, and number of beads 10 000)
were kept the same for both data sets, despite the great
difference in their sizes. Figure 7 shows that, indeed, when
the width of the graph is increased by a factor of 10, the
coverage over the large data sets (1000 strings) becomes
close to 80%, as expected. (In addition, when the number
of beads is increased 10-fold, the coverage trivially becomes
100%, as in a graph of width 10 and length 5, the full
combinatorial library requires no more than 100 000 beads.)

Next, we explored the behavior of our algorithm when
different values of the graph width and the number of beads

Table 1. Statistics on the Performance of All Algorithms on
the Different Types of Data Setsa

prob path lookahead

1000 real data 340.8 (13.18) 357.8 (11.61) 357.8 (11.32)
96 real data 86.0 (1.68) 85.0 (2.12) 87.0 (1.57)
100 synth data 80.6 (1.64) 78.4 (1.50) 81.5 (1.43)
90 synth data 75.0 (1.24) 73.1 (1.79) 75.7 (1.15)
80 synth data 68.3 (1.33) 67.2 (1.31) 68.7 (0.94)
70 synth data 61.6 (0.84) 61.2 (0.91) 61.9 (0.87)

a Each line gives the average and standard deviation (in
parentheses) of the number of target strings produced by our
algorithm when run with the different scoring functions.
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were taken. Figure 7 presents the results for the large sets
of real data with different widths between 2 and 100. Figure
8 gives the number of produced strings on graphs with width
10 as a function of the number of beads (similar results were
obtained for the small data sets and are not shown).

From the above results, it is clear that increasing either
the width or the number of beads improves the results. The
effect of increasing the number of beads is moderate, whereas
increasing the width first causes a rapid exponential-like rise
of the number of produced target strings and then a slow
rise. The rapid rise continues untilw ) 10, where the
alphabet size (the number of distinct amino acids used in
the target library) is reached, because each new letter that is
added for the first time accommodates many of the target
sequences. After all the letters are present, the effect of
additional copies of the same letters is more modest. In

Figure 9, we explore the tradeoff between those two
parameters. Such plots allow the experimentalist to choose
the most convenient combination of the two parameters in
order to achieve a desired number of target strings.

Because our algorithm is deterministic and greedy, we
explored its stability by varying its starting points. For this
purpose, from each of the large data sets we generated 950
subsets, each containing 900 randomly selected sequences,
and we ran our algorithm on each of those subsets as the
target set. Note that each such subset imposes a slightly
different starting point, as compared with the one for the
full set of 1000 strings. The results obtained from these

Figure 6. Graphical representation of a synthesis graph and its arc weights, as produced by our program. When a node is chosen (node
3 in layer 2, here), the weights of the arcs emanating from it are listed on the right.

Figure 7. Impact of the graph width on performance. The graph
summarizes the results of the lookahead algorithm with different
widths on real data sets of 1000 strings. The average (dot) and
minimum and maximum (bars) are shown for each width. Figure 8. Impact of the number of beads on performance. The

graph summarizes the results of the lookahead algorithm with
different number of beads on real data sets of 1000 strings. The
average (dot) and minimum and maximum (bars) are shown for
each number of beads.
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random sets have a standard deviation of, at most, 5 strings,
which is 0.5% of the full set of 1000 strings, and about 1.5%
of the actually produced strings, thus indicating the stability
of the algorithm.

In addition, we compared the performance of our algorithm
on the random subsets, with its performance on subsets of
900 strings chosen by their high sequence similarity,2 and
found (see Figure 10) that our algorithm always performs
better on high-similarity subsets than on the randomly chosen
subsets. Interestingly, in 8 out of the 10 data sets we
examined, the performance on the high similarity subsets
was better than the performance on the full set of 1000
strings. These results give an initial indication of the
importance of integrating the diversity-selection methods and

the synthesis design methods into a comprehensive scheme
for designing libraries that are both diverse and efficiently
producible.

An Alternative Approach. One may consider other
approaches to solving max strings synthesis. For example,
using the same model of the weighted synthesis graph, one
can search for the optimum graph using other optimization
methods. As a first step toward examining this approach,
we devised a continuous optimization algorithm that uses
the steepest-descent technique to optimize the arcs weights
(while nodes are labeled using the initialization method
specified earlier). Our objective in this steepest-descent
algorithm was to maximize a function that is a continuous
smoothing of the number of target strings produced by the
synthesis graph (as determined by the arc weights and node
labels).

We tested this algorithm and found that it gives poorer
results in comparison with our discrete optimization.2

However, we observed2 that a combination of the steepest-
descent optimization with an arc deletion heuristic does
achieve competitive results, as compared to the discrete
algorithm. Further developments of alternative optimization
methods for this problem are left to future work.

5. Conclusion

In this work, we presented the max strings synthesis
problem, which formulates the question of finding the best
multiroute synthesis procedure for a given library of com-
pounds. In solving this problem, we defined the model of
the weighted synthesis graph and presented a discrete
optimization algorithm searching for the best graph. We
tested the discrete algorithm on several types of data sets
and on many configurations of the basic constraints and
shows that it is stable, behaves as expected (e.g., performs
better on sets of similar strings), and achieves good results.

The multiroute synthesis and our method for designing it
are quite general and could easily be applied to other
synthesis schemes, for example, the string synthesis process,12

which enables the easy identification of each of the produced
compounds (similar to the parallel synthesis), while produc-
ing combinatorial libraries (as in mix-and-split or multiroute
synthesis).
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